Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection

نویسندگان

  • Pamela Bielli
  • Matteo Bordi
  • Valentina Di Biasio
  • Claudio Sette
چکیده

Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5' splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5' splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5' splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5' splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5' splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5' splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of mRNA Abundance by Polypyrimidine Tract-Binding Protein-Controlled Alternate 5′ Splice Site Choice

Alternative splicing (AS) provides a potent mechanism for increasing protein diversity and modulating gene expression levels. How alternate splice sites are selected by the splicing machinery and how AS is integrated into gene regulation networks remain important questions of eukaryotic biology. Here we report that polypyrimidine tract-binding protein 1 (Ptbp1/PTB/hnRNP-I) controls alternate 5'...

متن کامل

A mechanism underlying position-specific regulation of alternative splicing

Many RNA-binding proteins including a master regulator of splicing in developing brain and muscle, polypyrimidine tract-binding protein 1 (PTBP1), can either activate or repress alternative exons depending on the pre-mRNA recruitment position. When bound upstream or within regulated exons PTBP1 tends to promote their skipping, whereas binding to downstream sites often stimulates inclusion. How ...

متن کامل

The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x

The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphoryl...

متن کامل

SRSF10 Connects DNA Damage to the Alternative Splicing of Transcripts Encoding Apoptosis, Cell-Cycle Control, and DNA Repair Factors

RNA binding proteins and signaling components control the production of pro-death and pro-survival splice variants of Bcl-x. DNA damage promoted by oxaliplatin increases the level of pro-apoptotic Bcl-xS in an ATM/CHK2-dependent manner, but how this shift is enforced is not known. Here, we show that in normally growing cells, when the 5' splice site of Bcl-xS is largely repressed, SRSF10 partia...

متن کامل

Polypyrimidine tract sequences direct selection of alternative branch sites and influence protein binding.

IVS1, an intron derived from the rat fibronectin gene, is spliced inefficiently in vitro, involving the use of three alternative branch sites. Mutation of one branch point site, BP3, so as to increase complementarity to U2 snRNA resulted in exclusive use of that site and improved splicing efficiency, indicating that the wild type BP3 site is one determinant of poor IVS1 splicing. Deletions with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014